Rad Path 10/16/17: Mediastinum, Lung, and Chest wall

Ellen X. Sun, MD, Radiology Cindy B. Schmelkin, MD, Pathology Brigham and Women's Hospital Case 1

32M with acute onset neck stiffness and a "thickened neck blood vessel"

Tumor markers were tested and completely normal

pathology BS-17-33526

Save for AIRP

Benign teratoma

- Younger patients, age < 50, both F/M
- Usually asymptomatic
- Encapsulated and well defined on CT
- Heterogeneous: intralesional fat, fluid, calcification
- Fat-fluid level highly specific but uncommon
- Can be mostly cystic
- May hemorrhage
- Vs. malignant teratomas → large, multinodular, poorly defined
- Both can grow in size

Mediastinal masses

- Slightly over ½ are in the anterior mediastinum
- ¼ middle
- ¼ posterior

Differential: anterior mediastinal masses

- Most common: Thymoma
 - Highest incidence in middle aged patients
- Other neoplasms
 - Thymic carcinoma, thymic carcinoid
 - Benign teratomas
 - Malignant germ cell tumors
 - Seminomas, nonseminomatous germ cell tumors (NSGCTs –include malignant teratomas)
 - Substernal extension of thyroid neoplasms
 - Ectopic parathyroid adenomas (small)
 - Lymphoma
- Non-neoplastic
 - Thymic cysts
 - Pericardial cysts, bronchogenic/foregut duplication cysts
 - Neurogenic tumor
 - Vascular abnormalities
 - Substernal extension of thyroid goiters
 - Infectious lesions
 - Morgagni hernia

Anterior mediastinal masses

Image modalities

- CECT is traditionally the first choice
 - Equal or superior to MRI in diagnosis of anterior mediastinal masses except for thymic cysts²
- If cystic mass \rightarrow MRI
 - Great for differentiating cystic from solid, thymic hyperplasia from thymic tumors
- FDG-PET
 - Okay for staging cancer, but misleading since normal and hyperplastic thymus + inflammatory lesions are often FDG-avid

Approaching the Patient with an Anterior Mediastinal Mass: A Guide for Radiologists

Brett W. Carter, MD,* Meinoshin Okumura, MD,† Frank C. Detterbeck, MD,‡ and Edith M. Marom, MD*

Journal of Thoracic Oncology® • Volume 9, Number 9, Supplement 2, September 2014

	% of Anterior Mediastinal Masses	Level of Confidence	Diagnosed With ^a	Confirm With/Next Steps
Highly Characteristic Lesions				
Hyperdense and enhancing lesion with connection to thyroid \rightarrow Goiter	20-40% age >40	Certain	Imaging	-
Heterogeneous with fat, fluid, soft tissue, & calcification \rightarrow Benign teratoma	25% age 10-19 10-15% age 20 - 49	Very high	Imaging	-
Well-circumscribed, round/oval/saccular, and homogeneous mass located near thymic bed on CT → Consider thymic cyst and evaluate with MRI If purely cystic → Thymic cyst and follow-up with MRI	<5%	Very high	Imaging	MRI
If cystic but with soft tissue components → Multilocular cyst or cystic thymoma	<5%	Uncertain	Imaging, Clinical	Resection
If purely cystic and located in cardiophrenic angle \rightarrow Pericardial cyst	LOW	very nign	imaging	1-

Calcifications are NOT helpful in distinguishing benign and malignant anterior mediastinal lesions!

Suggestive on Imaging; Requires Clinical Context							
Lobular, homogeneous or slightly heterogeneous mass \rightarrow Thymoma	15-25% age 20-39 ~50% age >40	Moderate	Imaging	$\pm \operatorname{Biopsy}$			
Context: Pt with Myasthenia gravis or other paraneoplastic syndrome	5-10% age 20-39 ~20% age >40	Certain	+Clinical	\pm Biopsy			
Multiple markedly enlarged or matted lymph nodes / masses in anterior mediastinum ± neck, ± encasing but respecting vessels → HD, MLC- NHL	20-50% ♀ age <40 20-25% ♂ age <40 <10% ♂♀ age >40	High	Imaging	Core biopsy			
Context: "B" symptoms and \uparrow LDH	Same	Very high	+ Clinical	Core biopsy			
Large mass with pleural effusion, rapid onset, "B" symptoms \rightarrow LB-NHL	15% age 10-19 5-10% age 20-39	High	Imaging, Clinical	Cytology			
Large heterogeneous mass, especially with lung metastases \rightarrow NSGCT Context: Young \eth with rapid onset of symptoms	10-25% ♂ age <40 < 5% ♂ age >40 2-5% ♀ age <40	Moderate	Imaging, Clinical	Labs, ± biopsy			
Homogeneous or slightly hetrogeneous mass ± lung metastases → Seminoma Context:: young ♂, intermediate onset	5-10% ♂ age <40 0-2% ♀ age <40	Moderate	Imaging, Clinical	Biopsy			
Large heterogeneous mass, local invasion, lymphadenopathy, ± distant metastases → Thymic carcinoma or carcinoid	<2% age 20-39 ~5% age >40	Uncertain	Imaging	Biopsy			
Low attenuation, symmetric enlargement of thymus Context:: Pt treated with chemo, RT, or steroids → Thymic hyperplasia	Uncommon	Very high	Clinical, Imaging	± MRI			

Rare Characteristic Features						
Lobular, homogeneous or slightly heterogeneous mass and with subpleural implants → Thymoma (invasive)	<5%	Very high	Imaging	Biopsy		
Large fatty mass with small amount of soft tissue & vessels, connection with thymus → Thymolipoma	<5%	Very high	Imaging	-		
Lobulated, encapsulated lesion consisting almost entirely of fat \rightarrow Lipoma	2%	Very high	Imaging	-		
Fatty lesion with aggressive features such as soft tissue components, invasion, lymphadenopathy, or metastatic disease → Liposarcoma	Very rare	Moderate	Imaging	Biopsy		

34M with numbness and tingling in his fingers

pathology BS-16-58730

Mediastinal lipoma vs. liposarcoma

- Lipoma
 - ~2% of primary mediastinal neoplasms
 - Mostly fat + small amount of soft tissue and vessels

Liposarcoma

- Very rare
 - 0.5-1.9% of all liposarcomas are found in mediastinum
- Aggressive features → increased soft tissue components, local invasion, adenopathy, mets
- Treat by surgical resection
- No established chemotherapy (poor response)
- 40% recur after surgery

Case 3

64F heart transplant patient with right-sided chest pain, which is reproducible on exam

pathology BS-16-66882

Unfortunately, despite ~ 4 months of antifungal treatment, patient developed respiratory failure, enlarging pleural effusions and hypotension. Code status changed to comfort measure only.

Mar All

Autopsy results:

PERICARDIAL FUNGAL ABSCESS with infiltration of ~90% of the thickness of right atrial wall, and extension into mediastinum and right-sided pleura

Post mortem histology with numerous fungal hyphal forms consistent with Aspergillus fumigatus

Mediastinal invasive aspergillosis

- Predisposing factors for invasive aspergillosis
 - Prolonged neutropenia, chronic granulomatous disease, high dose steroids, post-transplantation, leukemia, cytotoxic therapy recipients, AIDS
- CT: necrotic mass infiltrating into adjacent tissues
 - No clear differentiation from mediastinal tumors
- Diagnosis requires high clinical suspicion

Quiz

Mediastinal invasive aspergillosis only occurs in immunocompromised patients.

- A. True
- B. False

Quiz

Mediastinal invasive aspergillosis only occurs in immunocompromised patients.

- A. True
- B. False

Occurs even in immunocompetent patients!

Mediastinal invasive aspergillosis

Sensitivity of galactomannan assay

- High in immunocompromised patients or with fast disease progression
- Very low in immuno<u>competent</u> patients or in noninvasive Aspergillus infection
- High mortality, 30-50% despite adequate antifungals
 - Very poor prognosis with cardiac involvement, usually due to delayed diagnosis
- Surgical resection is the only curative treatment

Case 4

67F with incidentally found lung abnormality

• No improvement after azithromycin

Bronchoscopy with FNA showed numerous lymphocytes

pathology BS-16-66091

Primary pulmonary lymphoma

- Types
 - MALT lymphoma (low-grade marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue)
 - Other NHLs (e.g. DLBCL)
 - Hodgkin lymphoma
- Most common (90%) = MALT lymphoma
 - Though only 3-4% of extranodal lymphomas
 - <1% of all lung malignancies

MALT lymphoma

- Often asymptomatic, indolent
- Patients usually in 6th decade
- Can coexist with pulmonary amyloidosis, LIP
- Association with
 - Autoimmune diseases (Sjogrens, RA, CVID)
 - Chronic inflammation from smoking
 - Infections such as HIV, hepC

Histopathologic findings	Sheets of monoclonal lymphocytes
	Plasma cells and germinal centers present; Dutcher bodies present
	Lymphangitic spread at the periphery of lesions
	Can invade adjacent airways, vessels, pleura
	May be associated with trisomy 3, bcl-10 mutations, and t(11;18)(q21;q21)

MALT lymphoma

- Imaging
 - Nodules, masses, nodular/masslike area of GGO and/or consolidation
 - Multiple/bilateral > 70%
 - Bronchovascular distribution
 - Air bronchograms
 - Hilar and mediastinal adenopathy seen in 30%
 - Rare
 - Present as patchy large areas of GGO throughout
 - Or infiltrate along airways \rightarrow mosaic attenuation
 - ¹/₂ are FDG-avid
- Pleural effusions, BM involvement are uncommon
- Monoclonal gammopathy seen in 40% patients

MALT lymphoma

- DDx for MALT lymphoma
 - = other entities that manifest in a peribronchovascular distribution
 - Wegener granulomatosis
 - Sarcoidosis
 - Perilymphatic spread of metastatic disease
 - Infection
- Clinical history is helpful
- Diagnosis needs tissue sample with immunohistochemistry
- Treatment
 - Chemo or immunotherapy (rituximab)
 - Surgery and radiation if localized disease
- Good prognosis
- But recur in up to 50% in lungs or other areas containing MALT (e.g. GI tract)

Case 5

62F with recurrent severe hypoglycemia

• Past smoker

Apparently, patient has had this since 2000, biopsy attempted in 2000 was nondiagnostic

pathology BS-17-48934 Gave to Lisa R. for AIRP

Solitary fibrous tumor of pleura

- 4% of all pleural neoplasms
- Mesothelial origin, mesenchymal origin
 - Not associated with asbestos exposure and usually good prognosis
- 80% arise from visceral pleura
 - May also derive from parietal pleura, other serosal membranes (peritoneum, pericardium), and nonserosal sites (lung parenchyma, mediastinum)
- Malignancy is defined by pathologic findings (cellularity, mitosis, atypia...), associated pleural effusion, atypical location, and invasion
 - 12 33% are malignant
- M=F, peak incidence in 6th-7th decades of life
- Usually asymptomatic, unless large

Quiz

The association of paraneoplastic hypoglycemia with pleural solitary fibrous tumor is termed the

- A. Pierre-Marie-Bamberg syndrome
- B. Mankowsky syndrome
- C. Doege-Potter syndrome
- D. Klempere-Rabin syndrome

Quiz

The association of paraneoplastic hypoglycemia with pleural solitary fibrous tumor is termed the

- A. Pierre-Marie-Bamberg syndrome
- B. Mankowsky syndrome
- C. Doege-Potter syndrome
- D. Klempere-Rabin syndrome

Solitary fibrous tumor of pleura

- Paraneoplastic syndromes
 - Hypertrophic osteoarthropathy (20%) = Pierre-Marie-Bamberg syndrome
 - Due to production of hyaluoronic acid, or hepatocyte growth factor
 - Hypoglycemia (2-4%) = Doege-Potter syndrome
 - Due to production of insulin-like growth factor II
 - Serous pleural effusion (10%)

Quiz

The following tumors in the chest can also present with hypoglycemia, EXCEPT for

- A. Mesothelima
- B. Leiomyosarcoma
- C. Squamous cell carcinoma
- D. Liposarcoma
- E. Metastatic hepatocellular carcinoma

Quiz

The following tumors in the chest can also present with hypoglycemia, EXCEPT for

- A. Mesothelima
- B. Leiomyosarcoma
- C. Squamous cell carcinoma
- D. Liposarcoma
- E. Metastatic hepatocellular carcinoma

Solitary fibrous tumor of pleura

- CT
 - Well circumscribed, homogeneous density
 - CT cannot tell between benign and malignant --- FDG PET can (high uptake)
- CT guided FNA is often inconclusive (45% accuracy)
- Diagnose by histologic and immunohistochemical analysis
- Treat by complete surgical excision
- Local recurrence uncommon in benign lesions (8%), but high rate for malignant lesions (up to 63%)
- Most recurrences occur within 24 months of initial resection
- But late recurrence possible → need long term follow up of 15-20 yrs!

Case 6

 63M presenting to PCP office with cough, dyspnea, left anterior chest wall pain

pathology BS-16-56742

Differential: solitary expansile lytic/lucent rib lesion

- Plasmacytoma
- Metastases (most common)
 - Multiple myeloma
 - RCC
- Chondrosarcoma (ring and arcs)
- Enchondroma (ring and arcs)
- Ewing sarcoma
- Fibrous dysplasia
- Aneursymal bone cyst
- Eosinophilic granuloma (Langerhans cell histiocytosis)

Bonus case!

42M with interstitial lung disease of unknown etiology, who presents with increased hypoxia

April

June

pathology BS-17-41279

Crazy paving: differential diagnosis

Radiographics. 2003 Nov-Dec;23(6):1509-19.

Take Home

- Know your mediastinal mass differential
- Infections can be "mass-like"
- Primary pulmonary lymphoma can present variably as nodules/masses, consolidation or GGO
- Don't forget about metastasis to the chest

Thank you to

- Dr. Angela Giardino
- Dr. Mark Hammer

References

- 1. Carter et al. Approaching the patient with an anterior mediastinal mass: a guide for radiologists. J Thorac Oncol. 2014 Sep;9(9 Suppl 2):S110-8.
- 2. Tomiyama et al. Anterior mediastinal tumors: diagnostic accuracy of CT and MRI. Eur J Radiol 2009;69:280–288.
- 3. Quint LE. Imaging of anterior mediastinal masses. Cancer Imaging. 2007; 7(Special issue A): S56–S62.
- 4. Edagawa et al. Surgical resection of a well-differentiated inflammatory liposarcoma of the middle mediastinum: a case report. J Thorac Dis. 2017 Aug; 9(8): E689–E693.
- 5. Kartik et al. Invasive Mediastinal Aspergillosis in Immunocompetent Male with Invasion of Left Atrium and Hilar Structures. Indian J Crit Care Med. 2017 Jun; 21(6): 408–411.
- Han et al. A Case of Invasive Pulmonary Aspergillosis with Direct Invasion of the Mediastinum and the Left Atrium in an Immunocompetent Patient. Tuberc Respir Dis (Seoul). 2014 Jul; 77(1): 28–33.
- Thakkar et al. Giant solitary fibrous tumour of pleura -an uncommon intrathoracic entity- a case report and review of the literature. Ann Thorac Cardiovasc Surg. 2011;17(4):400-3.

- 8. Kalebi et al. Surgically cured hypoglycemia secondary to pleural solitary fibrous tumour: case report and update review on the Doege-Potter syndrome. J Cardiothorac Surg. 2009 Aug 18;4:45.
- 9. Sirajuddin et al. Primary Pulmonary Lymphoid Lesions: Radiologic and Pathologic Findings. Radiographics. 2016 Jan-Feb;36(1):53-70.
- 10. Rossi et al. "Crazy-paving" pattern at thin-section CT of the lungs: radiologic-pathologic overview. Radiographics. 2003 Nov-Dec;23(6):1509-19.
- 11. Nam et al. Imaging of primary chest wall tumors with radiologic-pathologic correlation. Radiographics. 2011 May-Jun;31(3):749-70.
- 12. Guttentag AR, Salwen JK. Keep Your Eyes on the Ribs: The Spectrum of Normal Variants and Diseases That Involve the Ribs. Radiographics. 1999 Sep-Oct;19(5):1125-42.